The consistency defined above may be called Weak Consistency. The sequence is Strongly Consistent, if it Converges Almost Surely to the true value. To say that the sequence Xn converges almost surely or almost everywhere or with probability 1 or strongly towards X means that
Mar 9, 2010
Consistency and Convergence
A consistent sequence of estimators is a sequence of estimators that converge in probability to the quantity being estimated as the index (usually the sample size) grows without bound. In other words, increasing the sample size increases the probability of the estimator being close to the population parameter. Mathematically, a sequence of estimators is a consistent estimator for parameter θ if and only if, for all ε > 0, no matter how small, we have
The consistency defined above may be called Weak Consistency. The sequence is Strongly Consistent, if it Converges Almost Surely to the true value. To say that the sequence Xn converges almost surely or almost everywhere or with probability 1 or strongly towards X means that
The consistency defined above may be called Weak Consistency. The sequence is Strongly Consistent, if it Converges Almost Surely to the true value. To say that the sequence Xn converges almost surely or almost everywhere or with probability 1 or strongly towards X means that
Subscribe to:
Post Comments (Atom)
0 comments:
Post a Comment